

Search for New Physics via not so rare K⁺ Decay Experiments at J-PARC

Outline

Michael D. Hasinoff
University of British Columbia
on behalf of the TREK collaboration

- Hadron Facility at J-PARC
- TREK Program TREK = Time Reversal Experiment with Kaons
 - Search for Time Reversal Symmetry Violation
 - Test of Lepton Universality
 - Search for Heavy Neutrinos

Lower intensity

- TREK Apparatus -- R & D
- Status & Schedule

J-PARC Mar 2011 Earthquake Damage

K1.1BR = K0.8 Beam Line Installation

- K1.1BR completed in summer 2010 using the supplementary budget of FY09
- Commissioned in Oct. 2010 by the TREK collaboration

K1.1BR = K0.8 Beam Line Installation

- K1.1BR completed in summer 2010 using the supplementary budget of FY09
- Commissioned in Oct. 2010 by the TREK collaboration
 - ESS Length of 2.0m to be increased to 2.5m
 - Length Q8-FF of 3.3m to be reduced to 1.5m (remove iron shielding wall)

Low-p K⁺ beam at K1.1BR

- Optics design by J.Doornbos (TRIUMF)
 - Based on the IFY concept by Dr. H. Noumi
 - Effective suppression of the cloud pions
 - Under the given conditions at the T1 target (K1.8 priority)
 - Possible future extension to K1.1
- Low acceptance compared with other LE beamlines, but we can still use our low rate CsI(TI) detector

Beam	Extraction (degree)	Momentum (GeV/c)	Acceptance (msr %)	Length (m)	ES separator (Stage)	Comment
K1.1BR	6	0.8	4.6	20.3	single(+IFY)	rad hard
LESB-III (AGS)	0	0.8-0.71	48	19.6	double	requires high
FNAL (design)	0	0.55	120	13.7	double	rate detectors

K1.1BR beam commissioning

Oct.-Nov. 2010

K1.1BR beam line performance

Oct.- Nov. 2010

Pt target $p_0 = 800 \text{ MeV/c}$ ESS = ±300 kV H. slits = wide open π/K ratio = 1.14 K^+ yield : ~OK

Setting of: Q3/Q4 & Q5/Q6 as optics design

~ 6 × 10⁴ /spill @ 3.6 kW for the standard slit opening

COMET Beam Line for mu-e Exp.

Another possible option of the COMET line

-- this does not share as many of the high-p line magnets but it would allow K1.1BR to remain in place

Stopped K⁺ Experiments @ K1.1BR

E06 (TREK)

"Measurement of the T-violating transverse muon polarization (P_T) in $K^+ \rightarrow \pi^0 \mu^+ \nu$ decay"

Stage-1 approved needs 270 kW (\geq 100 kW)

●P36 (LFU)

"Measurement of $R_K = \Gamma(K^+ \to e^+ v) / \Gamma(K^+ \to \mu^+ v)$ and search for heavy sterile neutrinos" Stage-1 recommended (PAC11-Jan'11) only 30 kW

June 20, 2012 Michael Hasinoff, UBC Project X Workshop FNAL

11

TREK Collaboration

CANADA

University of British Columbia University of Manitoba Université de Montréal University of Saskatchewan TRIUMF

USA

Hampton University
T. Jefferson Nat. Laboratory
Iowa State University
University of South Carolina

RUSSIA

Russian Academy of Sciences (RAS)
Institute for Nuclear Research (INR)--Moscow

JAPAN

Osaka University
National Defense Academy
Tohoku University
High Energy Accelerator Research Org. (KEK)
Chiba University
Kyoto University
Tokyo Institute of Technology (TITech)
University of Tokyo

VIETNAM

University of Natural Sciences

New collaborators are welcome!

Physics of E06: $K_{\mu 3}$ T violation (TREK)

Transverse μ^+ polarization in $K_{\mu 3}$ Decay

$$K^+ \rightarrow \pi^0 \mu^+ \nu \, \mathrm{decay}$$

$$P_T = \frac{\sigma_{\mu} \cdot (\boldsymbol{p}_{\pi^0, \gamma} \times \boldsymbol{p}_{\mu})}{| (\boldsymbol{p}_{\pi^0, \gamma} \times \boldsymbol{p}_{\mu}) |}$$

- P_T is T-odd, and spurious effects from final state interaction are small: P_T(FSI) < 10⁻⁵ Non-zero P_T is a signature of T violation.
- Standard Model (SM) contribution to P_T : $P_T(SM) < 10^{-7}$ Hence P_T in the range $10^{-3} 10^{-5}$ is a sensitive probe of CP violation beyond the SM.
- There are many theoretical models of new physics which allow a sizable P_T value without conflicting with other experimental constraints.

The TREK experiment aims for a sensitivity of 10⁻⁴

TREK Experimental Apparatus

 $K^+ \rightarrow \pi^0 \mu^+ \nu$

Use an upgraded E246 detector

 P_T is measured as the azimuthal asymmetry A_e^+ of the μ^+ decay positrons

Upgraded E246 detector

Stopped beam method $K^+ \rightarrow \pi^0 \mu^+ \nu$

Double ratio experiment

$$A_T = (A^{fwd} - A^{bwd}) / 2$$

$$A^{fwd(bwd)} = \frac{N_{cw} - N_{ccw}}{N_{cw} + N_{ccw}}$$

$$P_T = A_T / \{\alpha < \cos \theta_T > \}$$

 α : analyzing power < $\cos\theta_{\mathrm{T}}$ > : attenuation factor

 $Im\xi = P_T / KF$: physics parameter

KF : kinematic factor

Current limit from KEK--E246

$$P_T = -0.0017 \pm 0.0023(stat) \pm 0.0011(syst)$$

 $|P_T| < 0.005 : 90\% C.L.$

$$Im\xi = -0.0053 \pm 0.0071(stat) \pm 0.0036(syst)$$

 $|\text{Im}\xi| < 0.016 : 90\% C.L.$

Statistical error dominates

fwd - π^0 (γ)

bwd - π^0 (γ)

Expected sensitivity -- TREK

We are aiming for a sensitivity of $\delta P_T \sim 10^{-4}$

$$\delta P_T^{\text{stat}}$$
 (TREK) ~ 0.05 δP_T^{stat} (E246) ~ 10⁻⁴

 $\sim 1.4 \times 10^7 \text{ sec}$ runtime

- 1) Beam intensity x 30
- 2) Detector acceptance x 10
- 3) Larger analyzing power

$$\delta P_{\tau}^{\text{syst}} \sim 10^{-4}$$

- 1) Precise calibration of misalignments
- 2) Correction of systematic effects
- 3) Precise fwd-bwd cancellation

Three Higgs doublet model

$$L = (2\sqrt{2}G_F)^{\frac{1}{2}} \sum_{i=1}^{2} \{\alpha_i \bar{u_L} V M_D d_R H_i^+ + \beta_i \bar{u_R} M_U V d_L H_i^+ + \gamma_i \bar{\nu_L} M_E e_R H_i^+\} + \text{h.c.},$$

$$\mathrm{Im}\xi=rac{m_K^2}{m_H^2}\mathrm{Im}(\gamma_1lpha_1^*)$$

- c.f. d_n , $b \rightarrow s\gamma \propto \text{Im}(\alpha_1 \beta_1^*)$, $(\alpha_1 \beta_1^*)$ $\text{Im}(\alpha_1 \beta_1^*) = \frac{-v_2^2/v_3^2}{\text{Higgs field v.e.v.}}$
- B→Xτν and B→τν at Super-Belle corresponds to P_T < 3 x 10⁻⁴
 c.f. TREK goal : P_T ≤ 1 x 10⁻⁴

Westron EDM 10⁴ (a) 10³ E246 $\mathbf{Im} \left(\gamma_1 \ \alpha_1^* \right)$ TREK goal 10² **(b)** 40 60 80 100 120

 P_T is most stringent constraint for $Im(\gamma_1\alpha_1^*)$!!

Comparison with P_T in $K_{\mu\nu\gamma}$

Kobayashi, Lin and Okada; Prog. Theor. Phys. 95, 361 (1995)

	$K_{\mu3} (K^+ \rightarrow \pi^0 \mu^+ \nu)$	$K_{\mu\nu\gamma}(K^+ \rightarrow \mu^+ \nu\gamma)$	
P_T origin interfering with G_F	G_S (scalar)	G_P , $G_R = (G_V + G_A) / 2$ (pseudoscalar & right-handed)	
$\langle P_T \rangle =$	$\sim 0.3 \text{ Im } \Delta_S$	$\sim 0.1 \text{ Im } \Delta_P + 0.3 \text{ Im } \Delta_R$	
	$\operatorname{Im} \Delta_{S} = \frac{\sqrt{2(m_{K}^{2} - m_{\pi}^{2})} \operatorname{Im} Gs^{*}}{(m_{s} - m_{u})m_{\mu}G_{F} \sin \theta_{C}}$ $= 2 \operatorname{Im} \xi$	$\operatorname{Im} \Delta_P = \frac{\sqrt{2} m_K^2 \operatorname{Im} G_P}{(m_s + m_u) m_\mu G_F \sin \theta_C}$	
	$= 2 \operatorname{Im} \xi$	$\operatorname{Im} \Delta_R = \frac{\sqrt{2} \operatorname{Im} G_R}{G_F \sin \theta_C}$	

Measurements of both can discriminate between models

New Physics: Model predictions for P_T

Model	$K^+ \rightarrow \pi^0 \mu^+ \nu$	$K^+ \rightarrow \mu^+ \nu \gamma$
Standard Model	< 10 ⁻⁷	< 10 ⁻⁷
Final State Interactions	< 10 ⁻⁵	< 10 ⁻³
Multi-Higgs	$\leq 10^{-3}$ $P_T(K^+ \to \pi^0 \mu^+ \nu) \approx +$	$\leq 10^{-3}$ 3 $P_T(K^+ \rightarrow \mu^+ \nu \gamma)$
SUSY with squark mixing	$\leq 10^{-3}$ $P_T(K^+ \to \pi^0 \mu^+ \nu) \approx -$	$\leq 10^{-3}$ $3 P_T(K^+ \to \mu^+ \nu \gamma)$
 SUSY with R-parity breaking Leptoquark model Left-Right symmetric model 	$\leq 4 \times 10^{-4}$ $\leq 10^{-2}$	$\leq 3 \times 10^{-4}$ $\leq 5 \times 10^{-3}$ $< 7 \times 10^{-3}$

Most serious systematic error

- Analysis with MC simulations -

e+ asymmetry due to polarimeter misalignment

	Rotation	about
Component	<i>r</i> -axis	z-axis
Polarimeter	\mathcal{E}_r	$\mathcal{E}_{\mathbf{Z}}$
Muon B field	δ_r	$\delta_{\!\scriptscriptstyle oldsymbol{z}}$

fwd - bwd : vanishes for ε_r , ε_z , δ_r when *t*-integrated

fwd - bwd : does not vanish for $\delta_{7}!$

Innovative analysis method to separate misalignment effects

June 20, 2012 22 **FNAL**

Misalignment analysis using $K_{\mu 3}$

Asymmetry analysis in terms of θ_0 : in-plane muon spin angle from z-axis

$$\frac{A_{\text{sum}}(\theta_0)}{A_{\text{sub}}(\theta_0)} = (\bar{A}_{\text{fwd}}(\theta_0) + \bar{A}_{\text{bwd}}(\theta_0)/2 = \alpha_0 \{\delta_r \cos\theta_0 - \delta_z \sin\theta_0 + \eta(\theta_0)\} + \gamma$$

$$\frac{A_{\text{sub}}(\theta_0)}{A_{\text{sub}}(\theta_0)} = (\bar{A}_{\text{fwd}}(\theta_0) - \bar{A}_{\text{bwd}}(\theta_0))/2 = F(P_T, \theta_0).$$

- $\Delta \delta_z \sim \Delta \delta_r \sim 3 \times 10^{-4}$ for misalignment determination
- $P_T = 0$ and $\delta_z = \delta_r = 5^\circ = 87$ mr (for systematic error test)

$$==> \delta P_T = (2 \pm 7) \times 10^{-4}$$
 for 10⁸ events

High statistics MC simulation

 $250 \times 10^{8} K_{\mu 3}$ events with $\delta z = \delta r = 10 \text{ mr}, \ P_{T} = 0$

- Within the statistical error, no bias was found in the analysis of this MC data nor the analysis code itself.
- Final systematics check will be done using the final analysis code together with a detailed analysis of real data.

June 20, 2012

Physics of P36: Lepton universality violation and heavy neutrino search

Lepton universality in $K_{\ell 2}$ and $\pi_{\ell 2}$ decays

$$R_K^{SM} = \frac{\Gamma(K^+ \to e^+ \nu)}{\Gamma(K^+ \to \mu^+ \nu)} = \frac{m_e^2}{m_\mu^2} \left(\frac{m_K^2 - m_e^2}{m_K^2 - m_\mu^2} \right)^2 (1 + \delta_r)$$

Very precise SM predictions

$$R_K^{SM}$$
 = (2.477 ± 0.001) x 10⁻⁵ R_{π}^{SM} = (12.352 ± 0.001) x 10⁻⁵

[V. Cirigliano and I. Rosell, Phys. Rev. Lett. 99 (2007) 231801]

High sensitivity to LFV beyond SM

[Masiero, Paradisi and Petronzio, Phys. Rev. D74 (2006) 011701]

e.g. MSSM with charged-Higgs SUSY-LFV

$$\Rightarrow R_K^{LFV} \sim R_K^{SM}(1 + 0.013)$$

$$R_K^{LFV} = R_K^{SM} \left(1 + rac{m_K^4}{M_{H^+}^4} \left(rac{m_ au^2}{m_e^2} \Delta_{13}^2 an^6 eta
ight)$$

Expected Exp'tal precision ~ 0.2%, presentation to PAC11

Impact of P36-LFU

New Pseudoscalar Interaction

$$R_{K}^{P} \sim R_{K}^{SM} \left[1 \pm \frac{\sqrt{2}\pi}{G} \frac{1}{\Lambda_{eP}^{2}} \frac{m_{K}^{2}}{m_{e}(m_{d} + m_{u})} \right]$$

$$\frac{R_{K}^{P}}{R_{K}^{SM}} \sim 1 + \left(\frac{1\text{TeV}}{\Lambda_{eP}} \right)^{2} \times 10^{3},$$

$$\Delta R_K/R_K = 0.2\%$$

$$\Lambda_{eP} \sim 750 \text{ TeV}$$

Experimental Challenges

Proposed Experimental Method

SD Bkgd in D0 events --use MC

$$\frac{N(K_{e2}^{SD}, 0\gamma)}{N(K_{e2})} = \frac{BR(K_{e2}^{SD})}{BR(K_{e2})} \cdot \frac{\Omega(K_{e2}^{SD}, 0\gamma)}{\Omega(K_{e2})}$$

$$= \frac{1.52 \times 10^{-5}}{1.55 \times 10^{-5}} \cdot \frac{0.513 \times 10^{-2}}{6.99 \times 10^{-2}} = 0.072,$$

MC – External Brems spectra

- (1) K_{e2} including external bremsstrahlung photon (in target)
- (2) $K_{\mu 2}$
- (3) Radiative K₁₂ decays

Subtraction of SD γ Bkgd

(1) K_{e2} including external bremsstrahlung photon (in target)

(2) $K_{\mu 2}$

(3) Radiative K₁₂ decays

IB and SD – well separated $\delta R_K/R_K$ (SD) < 0.04%

June 20, 2012 Michael Hasinoff, UBC

Project X Workshop

FNAL

SD subtraction - CsI(TI) efficiency

- Photon detection uncertainty arises from:
 - Effective solid angle dependence on $\rho(K^+)$
 - Instability of detection threshold E_{th}
 - Clustering efficiency dependence on event rate
- Main effect in P36 is the detection efficiency of K_{e2y} (SD dominated), which is used for the DO-SD subtraction. Other effects are relatively harmless.

Acceptance – Using MC simulation

$$Q = \frac{N_{MC}^{accpt}(K_{e2} : B = 1.4T)}{N_{K_{e2}}^{decay}} / \frac{N_{MC}^{accpt}(K_{\mu 2} : B = 1.4T)}{N_{K_{\mu 2}}^{decay}}$$

- Use MC code from E246
- Precise geometry input needed
- Physics input -- K⁺ distribution
- 100 times more events in P36
- However, the result must be checked using real data

Acceptance – Using $K_{\mu 2}$ peak

 Calibration run with reduced field to realize the same trajectory

(shift the position of the $K_{\mu 2}$ peak)

- n : beam normalization between the two runs
- $-\beta$: magnetic field effect
- Precise B field calculation and tracking simulation are needed

$$Q = \frac{N(K_{\mu 2}; B = 1.34 \text{ T})}{N(K_{\mu 2}; B = 1.4 \text{ T})} \times \beta \times n,$$

 \triangleright Error arises from the uncertainty of corrections, n and β

Acceptance – Using $K_{\mu 3}$ spectrum

- Use of wide p spectrum
- Calibration run with reduced B field of 0.9 T

164 MeV/c : 247 MeV/c K_{e2}

157 MeV/c : 236 MeV/c $K_{\mu 2}$

 α : spectral ratio

 β' : magnetic field effect

 γ : CsI(TI) efficiency effect

$$Q = \frac{N(K_{\mu 3}; B = 0.9 \text{ T}; 164 \text{ MeV}/c)}{N(K_{\mu 3}; B = 0.9 \text{ T}; 157 \text{ MeV}/c)} \times \alpha \times \beta' \times \gamma.$$

- > One calibration run -- no necessity for beam normalization
- More promising method

Backgrounds

- Physics backgrounds
 - A. In-flight μ^+ decay
 - B. Photon conversion
- Beam origin accidentals
 - C. Beam hit in CsI(TI)
 - D. Beam hit in AC
 - E. K^+ to K^0 conversion
 - F. K⁺ in-flight decay

June 20, 2012

• $\delta R_{\rm K}/R_{\rm K}$ in "Summary Table"

Michael Hasinoff, UBC

Project X Workshop

FNAL

Summary of systematic errors

	Error source	$\Delta R_K/R_K$	Comment	_
	(1) Detector performance			=
	Chamber efficiency	0.0004 -	Method-1	
	PID performance		$K_{e2}/K_{\mu 2}$ run	
2	CsI(Tl) performance	0.0007	Ambiguity of efficiency	
	Trigger and DAQ	small	to be measured	
	(2) Background			-
	Muon decay in flight	0.00015	Distance to AC	
	Photon conversion	0.0002		
	CsI(Tl) beam hit	0.00018		
	AC beam hit	0.0001		
	K^+ conversion	0.00003		
	(3) Analysis			_
	Code and cut parameters	small	≪ 0.001	
	SD subtraction	0.00036 -		
	(4) MC simulation			_
1	Acceptance ratio	0.00078	based on E246	
•	Magnetic field	small	< 0.0001	
	Input parameters	small	≪ 0.0001	
	Kaon stopping distribution	0.00015		
	Target interactions	0.0004 -		
	Material thickness	0.0002		
	IB theory	small	≪ 0.001	
	Total	0.0015		_

+ 4 other items at ~ 0.00040

 $\delta R_{\rm K}/R_{\rm K}$ (syst) = 0.0015 while $\delta R_{\rm K}/R_{\rm K}$ (stat) = 0.0020

Search for heavy sterile ν in K⁺ $\rightarrow \mu$ ⁺N

- In the framework of renormalizable extensions of the SM, eg. the vMSM, 3 light singlet right-handed (sterile v) are introduced
- The vMSM can explain
 - v oscillation
 - Light sterile v play a role in Dark matter
 - **Baryon asymmetry** can be induced by leptogenesis or through v oscillation
- Measure yield and polarization for $K^+ \rightarrow \mu^+ N$
 - Main background from K_{u3}

Detector R&D and construction

R&D -- Aerogel Cherenkov Counter

For e⁺/ μ ⁺ discrimination

Beam test

Large angle incidence -- efficiency as high as 99.9 ... but Small angle incidence -- efficiecy is as low as 80 %

variable mirror

FNAL

- Simulation code has been updated and reproduces the 1st prototype test result
- Mirror shape, aerogel shape, PMT are all optimized by this MC simulation
- Total efficiency is now estimated to be as high as 99.6 ± 0.03 % even for small angles
- Second prototype counter is currently being tested at J-PARC Michael Hasinoff, UBC Project X Worksl

R&D – Aerogel Č Counter Reflectors

R&D -- APD Readout for CsI(TI)

- Improve the timing characteristics of CsI(TI) by replacing PIN diode with APD
- Pulse shaping and pile-up analysis

One-module energy

One-module timing

ISC, Kharkov, Ukraine

Yuri Kudenko, INR, Moscow

Parameter	E06 APD readout	E246 PIN readout	
Electron yield	$47,000/\mathrm{MeV}$	$11,000/\mathrm{MeV}$	
Noise level	not yet measured	70 keV	
Energy resolution	$\sim 12\%$ for C.R.	12% for C.R.	
Time rsolution	3 ns for C.R.	12 ns for C.R. (9 ns for all)	
Pulse width	$\sim 1.5~\mu \mathrm{s}$	$15~\mu\mathrm{s}$	
Rate performance	$\sim 500~\mathrm{kHz}$	34 kHz	

only needed for E06

new requirement

too slow

• Both 1 and 9 module tests have been performed using an e⁺ beam at Tohoku Univ. to check the energy resolution and high-rate performance of APD readout

R&D -- APD Readout for CsI(TI)

For higher rate performance

- Possible 3 candidate schemes:
 - PIN-diode readout (same as in E246)
 - Best K/π ratio is required (Beam line K1.1BR)
 - APD readout (developed in 2010) (Proportional 5 x 5 mm²)
 - Already established, but expensive (Gain = 50, 300 pe/MeV)
 - MAPD readout (development in progress now) (Geiger 3 x 3 mm²)
 - Good S/N ratio, and cost effective (Gain = 10⁵, 70 pe /MeV)
 - Rate capability tested @ TRIUMF in Oct 2011

 There is still some rate dependence Better MAPDs are under development

TREK--LFU Tracking Upgrade

GEM technology – Hampton University -in collaboration with Jefferson Lab, & MIT

R&D – Sci Fibre Target for P36

For better tracking resolution

• 3 x 3 x 200 mm³ Scintillator

Target Fibre & MPPC Couplers

Fig 6/7. Green WLS fibre glued into a 3mm scintillating bar. Eight channel MPPC coupling board with the male coupler and female socket (which holds the MPPC).

MPPC Spectra

Noise Spectrum

Cosmic Ray Spectrum ~ 30 pe/MeV

MPPC Rad Test with TRIUMF π^+ Beam

Upgrade Timeline

- > Target:
 - Finer segmentation of Target scintillating fibres Readout: MPPC (Si-PMT) Hamamatsu
- > Particle ID:
 - Aerogel Cherenkov surrounding target, TOF
- Charged particle tracking:
 - Add new element C1 between CsI(TI) and C2
 - Add cylindrical GEM (C0) (remove aerogel)
- \succ π^0 (1&2 photon) detection:
 - ♦ New, faster readout of CsI(TI): APD, MAPD
 - Wave form analysis using FADCs
- Muon polarimeter :
 - Active polarimeter with increased acceptance
 - New muon holding field magnet with a parallel field

LFU 30 kW ~2014

TREK 270 kW >100 kW ~201x

SX power upgrade plan

	User operation	Accelerator study
2011.6-11(shutdown)	SX collimators	
2011.12-2012.6	3 - 5 kW	5 - 10 kW
2012.7-2012.9 (shutdown)	Ti chambers (SMS)	
2012.10-2013. 6	10 kW	50 kW
2013. 7-2014. 1 (shutdown)	Li 400MeV/50 mA,	Ti chambers (ESS)
2014. 2-2014. 6	50 kW	100 kW
2014.7 - 9(shutdown)		
2014. 10-	Toward 100 kW	

2011.12-2012.6: Recovery of the operation in the autumn 2010.

2012 summer: Installation of Ti chambers in the SMS section.

2013 summer: Installation of ESS with Ti chambers.

For duty

- Upgrade of RQ power supply for higher output voltage
- Coil short / ripple cancellor
- increase emittance
- ramping speed control of horizontal tune
- Replace the main magnet power supplies with newly developed ones (high rep. rate and low ripple)

Improvements

Installation of additional shields of ring collimators:

Loss power capacity will be increased from 0.45 to 2 kW by installing additional shields and an absorber in the 2011 shutdown and an additional set of collimators in the 2012 shutdown.

Replacement of the injection kicker system:

The new kicker system has well shaping pulse, no extra kick and lower beam coupling impedance

Installation of 7th and 8th RF system:

Higher accelerating voltages and manipulation of longitudinal bunch form to reduce the effect of space charge force

Modification of the rf cooling water system

A separate cooling water system from the magnet system

Installation of solenoid coils on the rf excitor

Suppression of multipactoring for slow extraction with transverse rf

Installation of collimator system in the slow extraction straight section

Reduction of residual activation of the quadrupole magnet, which is located downstream of ESS.

Desired time schedule (TREK)

- We would like to run P36 at K1.1BR in 2015.
- If K1.1BR remains available, we want to begin E06 once the intensity reaches 250 kW; if K1.1BR is no longer available, we would like to run E06 in the Hadron Hall extension.

Summary

- TREK at J-PARC is preparing two experiments
- "K1.1BR" secondary beamline has been commissioned
- K_{e2}/K_{µ2} measurement to test lepton universality (2014-15)
 & a search for heavy sterile neutrinos
 - Use E-246 apparatus with partial upgrades
- Measurement of the T-violating transverse muon polarization in K_{µ3} decay (~2016 ??)
 - Large potential for discovery of New Physics beyond the SM with a fully upgraded E-246 setup

New collaborators are welcome!

Thank You Merci Arigato Gozaimasu Spasibo

EXTRA SLIDES

Target interactions

Uncertainty of e^+/μ^+ penetration length produces an error

Error due to decay vertex resolution

Interaction	Probability uncertainty
Bremsstrahlung for positrons	0.038%
Annihilation for positrons	$\leq 0.010\%$
Photon conversion for both decays	0.010%
Total	0.041 %

$$\delta R_{\rm K}/R_{\rm K}=0.00041$$

Error due to material thickness uncertainty

Interaction	Relevant to	Correction error	$\Delta R_K/R_K$
Bremsstrahlung (rejected)	$ ilde{K}_{e2}$	0.003	2×10^{-4}
Annihilation in flight	$ ilde{K}_{e2}$	$\ll 10^{-4}$	$\ll 10^{-4}$
Photon conversion	$K_{e2\gamma}, K_{\mu2\gamma}$	3×10^{-3}	$\sim 10^{-5}$
Total			2×10^{-4}

$$\delta R_{\rm K}/R_{\rm K}=0.00020$$

57

Error evaluation of R_K measurement using a stopped K⁺ beam

$$\Gamma(K_{e2})/\Gamma(K_{\mu 2}) = N(K_{e2})/N(K_{\mu 2}) \Omega(K_{\mu 2})/\Omega(K_{e2}).$$

- Structure dependent (SD) component of the radiative K₁₂ decay have to be subtracted from the observed events.
- Misunderstanding of K_{e2} event loss due to high energy bremsstrahlung photons induce wrong K_{e2} acceptance.
- e/μ misidentification can easily introduce R_K uncertainty.
- Tracker efficiency difference between e^+ and μ^+ also introduce some error.
- Others: in-flight muon decay, beam accidentals, photon conversion into e[±].

LFV in SUSY

- LFV effect may be found in $\Delta R_{\rm K}$
- $\Delta R_{\rm K}/R_{\rm K} \approx 1\%$ corresponds to BR ($\tau \to eX$) $\leq 10^{-10}$
 - Strong correlation to BR (τ -> $e\eta$)
 - Additive to R_K^{SM} (no interference: $R_K > R_K^{SM}$)
- Strong constraint on $M_{\rm H}$ for large tan β (equal to a_{μ})

[Masiero, Paradisi and Petronzio; 2008]

MPPC Pulses

